Hall Ticke	et Numb	per:	 	 	

Code No.: 21113 S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (C.S.E.) I-Semester Supplementary Examinations, May/June-2017

Discrete Structures

Max. Marks: 70

Time: 3 hours Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 X 2=20 Marks)

- 1. Construct a truth table for (p v q) v p.
- 2. State Duality Law and write duals for
 - a) (pvq) ^r
 - b) $(p \land q) \lor r$
 - c) $\neg (p \land q) \lor (p \land \neg (q \lor \neg s))$
- 3. What is a partial order relation?
- 4. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ where $f(x) = x^2$, g(x) = x+5 show that fog ! = gof.
- 5. Write a one to one function for the set $A = \{1, 2, 3, 4, 5\}$.
- 6. Find the general solution for the recurrence relation $3a_{n+1} 4a_n = 0$, $n \ge 1$, $a_1 = 5$.
- 7. Define Planar Graph.
- 8. Find the spanning tree for the following graph.

- 9. Define algebraic system and write its properties.
- 10. Define semigroup and monoid.

Part-B (5 × 10 = 50 Marks)

11. a) Show that (x) $(P(x) \rightarrow Q(x)) \land (x) (Q(x) \rightarrow R(x))$ logically implies (x) $(P(x) \rightarrow R(x))$.	[-]
	5.03
(-5, -2, -2, -2, -2, -2, -1, -2, -1, -2, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2	121

- b) Apply Mathematical induction to verify $\sum_{i=1}^{n} i(2^{i}) = 2 + (n-1)2^{n+1}$
- 12. a) Let R denote a relation on the set of ordered pairs of positive integers such that [5] (x,y) R(u,v) if xv = yu. Show that R is equivalence relation.

b) Let f,g : $R \rightarrow R$ are bijectives prove that gof is also bijective. [5]

- 13. a) Determine the sequence generated by the following generating function: [5] $f(x) = x^4 / (1 - x)$
 - b) Find the coefficient of x^{50} in $(x^7 + x^8 + x^9 + \dots)^6$. [5]

151

[5]

14. a) Discuss prims' algorithm and find the minimal spanning tree for the following graph using [5] prims' algorithm.

:: 2 ::

b) Find the chromatic number of the following graph.

15.	 a) Let (Z⁺, +,0), (Z⁺, x,1) are two monoids f: Z⁺ → Z⁺ If for all m ∈ Z⁺, f(m) = 3^m prove that f is monoid homomorphism. 			
	b) Pro	ve that $(Q^+, *)$ where * is the binary operation defined by $a*b = ab/5$ is a group.	[6]	
16.	a) Ve	$ify (p \rightarrow q) \land (\neg q \land (r \lor \neg q)) \Leftrightarrow \neg (p \lor q).$	[5]	
	b) In 1 pat	now many ways can the 26 letters of the alphabets be permuted so that none of the terns car, dog, pun and byte occurs?	[5]	
17.	Write	short notes on any two of the following:		
	a)	Exponential generating functions	[5]	
	b)	Dual Graphs	[5]	
	c)	Parity check and generator Matrices.	[5]	

CACACASO SO SO