\square Code No.: 21113 S
VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
B.E. II Year (C.S.E.) I-Semester Supplementary Examinations, May/June-2017

Discrete Structures

Max. Marks: 70
Time: $\mathbf{3}$ hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A ($10 \times 2=20$ Marks)

1. Construct a truth table for $(p \vee q) \vee \neg p$.
2. State Duality Law and write duals for
a) $(p \vee q) \wedge r$
b) $(p \wedge q) \vee r$
c) $\urcorner(\mathrm{p} \wedge \mathrm{q}) \vee(\mathrm{p} \wedge\urcorner(\mathrm{q} \vee \neg \mathrm{s}))$
3. What is a partial order relation?
4. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ where $f(x)=x^{2}, g(x)=x+5$ show that fog $!=g o f$.
5. Write a one to one function for the set $A=\{1,2,3,4,5\}$.
6. Find the general solution for the recurrence relation $3 a_{n+1}-4 a_{n}=0, n>=1, a_{1}=5$.
7. Define Planar Graph.
8. Find the spanning tree for the following graph.

9. Define algebraic system and write its properties.
10. Define semigroup and monoid.

Part-B (5 $\times 10=50 \mathrm{Marks})$
11. a) Show that $(x)(P(x) \rightarrow Q(x)) \wedge(x)(Q(x) \rightarrow R(x))$ logically implies $(x)(P(x) \rightarrow R(x))$.
b) Apply Mathematical induction to verify $\sum_{i=1} 1^{n} i\left(2^{i}\right)=2+(n-1) 2^{n+1}$
12. a) Let R denote a relation on the set of ordered pairs of positive integers such that $(x, y) R(u, v)$ if $x v=y u$. Show that R is equivalence relation.
b) Let $f, g: R \rightarrow R$ are bijectives prove that gof is also bijective.
13. a) Determine the sequence generated by the following generating function:

$$
f(x)=x^{4} /(1-x)
$$

b) Find the coefficient of x^{50} in $\left(x^{7}+x^{8}+x^{9}+\ldots \ldots\right)^{6}$.
14. a) Discuss prims' algorithm and find the minimal spanning tree for the following graph using prims' algorithm.

b) Find the chromatic number of the following graph.

15. a) Let $\left(Z^{+},+, 0\right),\left(Z^{+}, x, 1\right)$ are two monoids $f: Z^{+} \rightarrow Z^{+}$If for all $m \in Z^{+}, f(m)=3^{m}$ prove that f is monoid homomorphism.
b) Prove that $\left(\mathrm{Q}^{+},{ }^{*}\right)$ where * is the binary operation defined by $\mathrm{a}^{*} \mathrm{~b}=\mathrm{ab} / 5$ is a group.
16. a) Verify $(p \rightarrow q) \wedge(\neg q \wedge(r \vee \neg q)) \Leftrightarrow \neg(p \vee q)$.
b) In how many ways can the 26 letters of the alphabets be permuted so that none of the patterns car, dog, pun and byte occurs?
17. Write short notes on any two of the following:
a) Exponential generating functions
b) Dual Graphs
c) Parity check and generator Matrices.

